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Abstract. A linearization procedure is proposed for Ermakov systems with frequency depending
on dynamic variables. The procedure applies to a wide class of generalized Ermakov systems which
are shown to be linearizable in a manner similar to that applicable to usual Ermakov systems. The
Kepler–Ermakov systems belong to this category but other, more generic, systems are also included.

1. Introduction

Ermakov systems [1–5] have merited special attention in recent years. A trend in the latest
developments on the subject, is to focus attention on some special features of subclasses of
Ermakov systems. These subclasses are frequently more flexible and may be tailored to suit
some particular application or special purpose. Among others, we quote applications such as
the identification of the Hamiltonian character in special circumstances [6, 7]; the determination
of a second constant of motion in certain other particular cases [8]; the identification of the
structure of associated Lie group of point symmetries [9, 10] and the extension of the Ermakov
system concept itself to higher dimensions [10–13].

A central feature of Ermakov systems is their property of always possessing a first integral,
commonly known as the Lewis–Ray–Reid invariant. The Lewis–Ray–Reid invariant can be
used to construct nonlinear superposition laws, another important feature of Ermakov systems
concerning their general solutions [14].

Recently, Athorne has shown that Ermakov systems in their usual form, where the
frequency function depends only on the time variable, are linearizable [15]. In the linearization
process, the Lewis–Ray–Reid invariant plays a central role, analogous to that played by the
angular momentum in the linearization of the two-body problem of classical mechanics [16].
The linearization, besides being an interesting mathematical attribute in itself, has found some
important applications. The linearized form of the Ermakov system plays a central role, for
example, in the resolution of a problem arising in the theory of two-layer, shallow water
waves [17], in the singularity analysis of Ermakov systems [18, 19] and in the study of higher-
dimensional Ermakov systems [12, 13]. In such applications, however, a restricting condition
on the class of Ermakov system is that its frequency function depends only on time, a fact that
imposes limitation on the scope of the linearization process. In a recent study, Athorne [20] has
found a class of dynamical systems, the so-called Kepler–Ermakov systems, that generalizes
the usual Ermakov systems while preserving the property of being amenable to linearization.
The natural question to ask at this point is, therefore, whether the Kepler–Ermakov systems are
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the only linearizable generalization of the Ermakov systems or if there exist other perturbations
of usual Ermakov systems that are also amenable to linearization.

The frequency function entering the Ermakov system may depend on the dynamic variables
and their derivatives, without any restriction on the existence of the Lewis–Ray–Reid invariant
[14]. The resulting generalized Ermakov systems, with frequency function depending on
the dynamic variables and their derivatives, besides time, have appeared in the study of
a generalized time-dependent sine–Gordon equation [21]. More recently, the Hamiltonian
character [7], the existence of a second exact invariant [8] and the Lie point symmetry group [9]
of Ermakov systems have been studied for such generalized frequency functions. In this paper
we address the question raised at the end of the previous paragraph and study the linearizability
of generalized Ermakov systems with frequency functions depending on dynamic variables
and their first derivatives, besides time. Our motivation is to find a more general class of
dynamical systems still amenable to linearization, on the same line as the usual Ermakov
or Kepler–Ermakov systems. In fact, as shown in detail in section 3, the Kepler–Ermakov
dynamical systems are nothing but a special class of the linearizable generalized Ermakov
system. This result puts the linearizability property of Kepler–Ermakov systems in a novel,
more generic and sound basis. It must be stressed, however, that the class of generalized
linearizable Ermakov systems is much larger than the class of Kepler–Ermakov systems, as
will be seen in section 2.

The paper is organized as follows. In section 2, a linearization procedure is proposed for
generalized Ermakov systems. The class of frequency functions for which the linearization
procedure applies is obtained in terms of several arbitrary functions. In the continuation, it is
shown that the general solution for the nonlinear equations can be recovered from the solution
for the corresponding linearized equation. The linearization of usual Ermakov systems is
recovered as a special case of the more general theory. In section 3, Kepler–Ermakov systems
are shown to belong to the class of generalized linearizable Ermakov systems. The linearization
procedure for Kepler–Ermakov systems is illustrated for the case of a particular non-central
force problem. In section 4 an example of a generalized linearizable Ermakov system is
presented which isnot of the Kepler–Ermakov type. The linearization of this system is also
exhibited. Section 5 is dedicated to the conclusions.

2. Linearization of generalized Ermakov systems

An Ermakov system [4, 14] in two dimensions, is a pair of coupled, nonlinear second-order
differential equations,

ẍ + ω2x = 1

yx2
f (y/x) (1)

ÿ + ω2y = 1

xy2
g(x/y) (2)

wheref and g are arbitrary functions of their indicated arguments andω, the so-called
frequency function, may depend on time, the dynamic variables and their derivatives [14].
In other words,ω = ω(t, x, y, ẋ, ẏ, ẍ, ÿ, . . .). Either for physical or else for simplifying
reasons, we restrict considerations to the cases where the frequency function depends at most
on the velocity components. In this work, the nomenclature ‘usual Ermakov system’ is used
whenω = ω(t), and ‘generalized Ermakov system’, or Ermakov system for short, is used
when the frequency has a more general dependence.

Independently of the way in whichω depends on the dynamic variables, the system (1),
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(2) always possesses the Lewis–Ray–Reid invariant

I = 1
2(xẏ − yẋ)2 +U(y/x) (3)

whereU is defined by

U(y/x) =
∫ y/x

f (λ) dλ +
∫ x/y

g(λ) dλ. (4)

The invariance ofI can be directly verified by checking that dI/dt = 0 along any trajectory
of the Ermakov system.

For the specific purpose of this work, polar coordinatesx = r cosθ andy = r sinθ are
more appropriate. In this system of coordinates the Ermakov system becomes

r̈ − rθ̇2 + ω2r = F(θ)/r3 (5)

rθ̈ + 2ṙ θ̇ = − 1

r3

dV

dθ
(6)

whereF andV (θ) = U(tanθ), are defined in terms off andg by

F(θ) = f (tanθ) + g(cotθ)

sinθ cosθ
(7)

dV

dθ
= sin2 θf (tanθ)− cos2 θg(cotθ)

sin2 θ cos2 θ
. (8)

In polar coordinates, the Lewis–Ray–Reid invariant becomes

I = 1
2(r

2θ̇ )2 + V (θ). (9)

As already pointed out [7, 9], the concept of a generalized Ermakov system has originated
from the observation thatω may depend arbitrarily on the dynamic variables and that, as a
consequence, only two and not three arbitrary functions are necessary to specify the Ermakov
systems. Indeed, redefining

ω2 7→ ω2 − F(θ)/r4 (10)

is equivalent to absorbingF into ω, that is, to makingF ≡ 0 in the pair of equations (5),
(6). Thus, strictly speaking, a generalized Ermakov system contains only two and not three
arbitrary functions. This redefinition, however, is not essential in the present context and the
usual notation is adopted in order to easy the comparison between our results and the results
found in the literature.

The linearization procedure for usual Ermakov systems is described in [15]. Our strategy
for the linearization of generalized Ermakov systems follows the same spirit except that the
assumption of a more generic dependence inω suggests a straightforward generalization of the
technique. In this way, we are able to find classes of Ermakov systems, specified by appropriate
dependence ofω in the dynamic variables, that are linearizable. For this purpose we follow
Athorne [15] and introduce the new dependent variableψ defined by

ψ = ρ(t)/r (11)

whereρ(t) is an arbitrary, unspecified function of time. The new independent variable will
be chosen as the angleθ . In order to obtain the equation of motion in the new variables, it is
necessary to express the time variation ofθ in terms of the invariant. This is achieved by use
of the Lewis–Ray–Reid invariant (9), from which we construct

θ̇ = h(θ; I )/r2 (12)

where a functionh, parametrically dependent on the numerical value ofI , was defined by the
relation

h(θ; I ) =
√

2(I − V (θ))1/2. (13)
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At this point it is interesting to compare equation (12) with the corresponding equation forθ̇

in the central force two-body problem. Here, the Lewis–Ray–Reid invariant plays the role of
angular momentum whereasV (θ) is a specific feature of the non-central nature of the motion.

Now using the Ermakov system (5), (6) and equations (11) and (13), we easily arrive at
the transformed equation

h2(θ; I )d
2ψ

dθ2
+

1

2

∂h2(θ; I )
∂θ

dψ

dθ
+ (h2(θ; I ) + F(θ))ψ = ρ3(ρ̈ + ω2ρ)

ψ3
. (14)

In order to obtain a linear equation in transformed variables, the dependence ofω in the
dynamic variables must be chosen such that the right-hand side of equation (14) becomes
a linear function ofψ and dψ/dθ . This condition yields the compatibility condition for
linearization,

ρ3(ρ̈ + ω2ρ)

ψ3
= a(θ; I )dψ

dθ
+ b(θ; I )ψ + c(θ; I ) (15)

wherea, b andc are arbitrary functions of the indicated arguments. A dependence on the
numerical value of the Lewis–Ray–Reid invariantI was included for maximal generality.
Notice how the extra dependence inω allows for a more general solution. In the caseω = ω(t)
treated by Athorne, only ¨ρ + ω2ρ = 0 together witha ≡ b ≡ c ≡ 0 was consistent with
linearity. In the present case,ρ remains arbitrary and three new functionsa, b and c are
introduced, leading to more general expressions forω compatible with linearization. The
resulting frequencies are given by

ω2 = − ρ̈
ρ

+

(
a(θ; I )dψ

dθ
+ b(θ; I )ψ + c(θ; I )

)
ψ3

ρ4
. (16)

In principle, we could include higher-order derivatives in the right-hand side of equation (14),
without restrictions to linearity. This possibility, however, was neglected, mainly for
simplifying reasons.

Now restricting to frequencies of the form (16), we find the linearized Ermakov equation

h2(θ; I )d
2ψ

dθ2
+

(
1

2

∂h2

∂θ
(θ; I )− a(θ; I )

)
dψ

dθ
+ (h2(θ; I ) + F(θ)− b(θ; I ))ψ = c(θ; I ).

(17)

Frequencies not of the form (16), necessarily correspond to Ermakov equations that do not
become linear under the transformation(r, t)→ (ψ, θ).

In order to express the frequencies of the linearizable systems in terms of the original
polar coordinates, we can use

dψ/dθ = ψ̇/θ̇ = −(ρṙ − ρ̇r)/r2θ̇ (18)

so that

ω2 = − ρ̈
ρ

+
(ρṙ − ρ̇r)
ρr3

A(θ, r2θ̇ ) +
B(θ, r2θ̇ )

r4
+
C(θ, r2θ̇ )

ρr3
(19)

where

A(θ, r2θ̇ ) = −a(θ; I )/(r2θ̇ ) (20)

B(θ, r2θ̇ ) = b(θ; I ) (21)

C(θ, r2θ̇ ) = c(θ; I ) (22)

are therefore arbitrary functions. Notice that the dependence ofA, B andC is of the correct
type, since the invariant (9) depends only onθ andr2θ̇ .
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The resulting linearizable generalized Ermakov system in polar coordinates has the form

r̈ − rθ̇2 − ρ̈
ρ
r +

(ρṙ − ρ̇r)
ρr2

A(θ, r2θ̇ ) +
B(θ, r2θ̇ )

r3
+
C(θ, r2θ̇ )

ρr2
= F(θ)

r3
(23)

rθ̈ + 2ṙ θ̇ = − 1

r3

dV

dθ
(24)

and involves six arbitrary functions, namelyρ,A,B,C, F andV . Other Ermakov systems,
besides those obtained by a dependence ofω on higher-order derivatives, may exist that are
amenable to linearization. We may convince ourselves of this by noticing that(ψ, θ) is only one
particular choice of transformed variables. Other different choices can be used and possibly
yield new classes of linearizable Ermakov systems. The great generality of system (23), (24),
however, is already sufficient for the purposes of this paper.

Some additional remarks are in order here. First, as already pointed out, the function
F can be dropped from the system by an adequate redefinition ofω. This is manifest in
equation (23) where we see, by inspection, thatB can account forF . The second and perhaps
more interesting remark is that the linearizable generalized Ermakov system (23), (24) can be
expressed in autonomous form, by means of a quasi-invariance [15, 22] transformation

r̄ = r/ρ θ̄ = θ t̄ =
∫ t

dλ/ρ2(λ). (25)

In these variables, we have the autonomous representation

r̄ ′′ − r̄ θ̄ ′2 +
1

r̄2
(Ar̄ ′ +B/r̄ +C) = F(θ̄)

r̄3
(26)

r̄ θ̄ ′′ + 2r̄ ′θ̄ ′ = − 1

r3

dV (θ̄)

dθ̄
(27)

where the prime stands for derivative with respect tot̄ andA, B andC are functions of
r̄2θ̄ ′ and θ̄ . The time dependence in (23), (24) is thus, in a sense, irrelevant. Consequently,
there remain, in fact, only four fundamental arbitrary functions in the linearizable generalized
Ermakov system (23), (24): that is,F may be incorporated inC andρ may be eliminated by
the quasi-invariance transformation. It must be stressed, however, that the quasi-invariance
transformation is not an essential step in the linearization procedure.

We may now recover the solution for the nonlinear dynamics from the solution for the
linearized Ermakov system. Let

ψ = ψ(θ; I, c1, c2) = c1ψ1(θ) + c2ψ2(θ) +ψp(θ) (28)

be the general solution for the linearized equation (17), wherec1 andc2 are arbitrary constants,
ψ1 andψ2 are two linearly independent solutions for the homogeneous part of (17), andψp
is any particular solution for (17). The solution for the nonlinear system follows from the
definition (11) of the linearizing variableψ and relation (12), from which we find

θ̇ = h(θ; I )ψ2(θ; I, c1, c2)/ρ
2(t). (29)

This is a separable first-order, ordinary differential equation, equivalent to the quadrature∫ θ dλ

h(λ; I )ψ2(λ; I, c1, c2)
−
∫ t dλ

ρ2(λ)
= J (30)

whereJ is the fourth integration constant of the equations of motion. The quadrature (30)
locally yields the equivalent relation,

θ = θ(t; I, J, c1, c2) (31)
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which is the general solution for the angular variable, involving four arbitrary integration
constants, or implicitly

t = t (θ; I, J, c1, c2). (32)

To obtain the orbits, we use the definition ofψ , the solution (28) for the linearized system and
the relation (32),

r = r(θ; I, J, c1, c2) = ρ(t (θ; I, J, c1, c2))

ψ(θ; I, c1, c2)
. (33)

The time evolution of the radial variable follows from the definition ofψ , the solution for
the linearized Ermakov system and the relation (31), from which we obtain

r = r(t; I, J, c1, c2) = ρ(t)

ψ̃(t; I, J, c1, c2)
(34)

whereψ̃(t; I, c1, c2) = ψ(θ(t; I, c1, c2); I, c1, c2). While equation (33) represents the orbits
for the nonlinear generalized Ermakov system, equations (31) and (34) give the time evolution
of the dynamic variables, in terms of the general solution for the linearized system.

A particular case in the class of linearizable Ermakov systems (23), (24) are the usual
Ermakov systems, with frequency depending only on time,ω ≡ ω(t). LetA ≡ B ≡ C ≡ 0
in the definition (19) of generalized frequencies, which implies

ρ̈ + ω2(t)ρ = 0. (35)

Equation (35) is the equation for a harmonic oscillator [2, 3] with time-dependent frequency.
In this particular case of a usual Ermakov system, the linearization (17) reduces to the equation

h2(θ; I )d
2ψ

dθ2
+

1

2

∂h2(θ; I )
∂θ

dψ

dθ
+ (h2(θ; I ) + F(θ))ψ = 0 (36)

which is homogeneous and linear. This result is in agreement with that of Athorne [15],
although in a slightly different form, due to the particular choice of linearizing variables.
Illustrative examples of linearization of usual Ermakov systems can be found in [15, 17–20].
In the following section, a non-trivial generalized Ermakov system that was not, until now,
treated as a member of the class of Ermakov systems is examined and its linearization explicitly
calculated.

3. Kepler–Ermakov systems

Kepler–Ermakov systems [20] are given by

r̈ − rθ̇2 = F(θ)/r3−G(θ)/r2 (37)

rθ̈ + 2ṙ θ̇ = −(dV (θ)/dθ)/r3 (38)

with F , G andV arbitrary functions of the indicated arguments. Kepler–Ermakov systems
were introduced as a linearizable perturbation of usual Ermakov systems. The termG in
equation (37) destroys the usual Ermakov character of the system. However, the system (37),
(38) belongs to the class of linearizable generalized Ermakov systems derived in section 2 and
consequently, is linearized by the procedure outlined above. This result sheds new light on the
reason why Kepler–Ermakov systems are linearizable. In fact, choose

A = B = 0 C = G(θ) ρ = 1 (39)

in the definition of linearizable Ermakov system (23), (24). This choice puts the system in the
form of a Kepler–Ermakov system and the corresponding linearization is given by

h2(θ; I )d
2ψ

dθ2
+

1

2

∂h2(θ; I )
∂θ

dψ

dθ
+ (h2(θ; I ) + F(θ))ψ = G(θ). (40)
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This equation, unlike the linearization of usual Ermakov systems, is a non-homogeneous linear
equation. The non-usual character of the frequency function associated with Kepler–Ermakov
systems is manifest in the equation

ω2 = G(θ)/r3 (41)

which depends exclusively on dynamic variables.
A typical example of linearization of a Kepler–Ermakov system can be found in [20]. Other

relevant systems that can be cast in the Kepler–Ermakov form are some of the superintegrable
systems treated by Winternitzet al [23] and by Rãnada [24]. To inspect one of these systems
as a Kepler–Ermakov system and to show how the linearization process works in a specific
case, let us consider the Hamiltonian

H = 1

2

(
p2
r +

p2
θ

r2

)
− µ0

r
+

1

r2

(
g1 + g2 cosθ

sin2 θ
+ g3

)
(42)

whereµ0, g1, g2 andg3 are positive constants. Wheng3 ≡ 0, the corresponding Hamilton–
Jacobi equation is separable in parabolic and polar coordinates, a fact that results from the
underlying dynamic symmetry algebra [23]. Forg3 6= 0, however, the system is still completely
integrable, as shown in [7]. Straightforward computation of the canonical equations

ṙ = ∂H/∂pr θ̇ = ∂H/∂pθ ṗr = −∂H/∂r ṗθ = −∂H/∂pθ (43)

shows that the Hamiltonian (42) yield a Kepler–Ermakov system, with

V (θ) = (g1 + g2 cosθ)/ sin2 θ (44)

F(θ) = 2(V (θ) + g3) (45)

G(θ) = µ0 (46)

in the equations of motion (37), (38). The corresponding linear equation (40) is easier to treat
in terms of a new time parameterT (θ; I ) defined by

T (θ; I, J ) =
∫ θ dλ

h(λ; I ) + J (47)

whereJ is an arbitrary constant. Interestingly, this new time parameter depends parametrically
on the numerical value of the Lewis–Ray–Reid invariantI . In terms of the new independent
variable, the linearization becomes

d2ψ

dT 2
+ (I + g3)ψ = µ0 (48)

the equation for a harmonic oscillator with a time-independent driving, that is always exactly
solvable. The explicit form of the solution will depend on the parametersI andg3. To construct
a particular case, takeI > 0 andg3 > 0. For this choice the solution of (48) is,

ψ = ψ(T ; c1, c2) = c1 cos(I + g3)
1/2T + c2 sin(I + g3)

1/2T +
µ0

I + g3
(49)

for arbitrary constantsc1 andc2. To expressψ in terms of the angleθ , we use (47) which, for
I > 0, yields

T (θ; I, J ) = − 1√
2I

sin−1

(
2I cosθ + g2

(g2
2 + 4I (I − g1))1/2

)
+ J. (50)

After substituting this result in (49), we findψ = ψ(θ; I, J, c1, c2). The orbits are then given
by

r = r(θ; I, J, c1, c2) = 1/ψ(θ; I, c1, c2) (51)
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which is obtained from the definition of the linearizing variableψ and the fact thatρ ≡ 1 in the
case of Kepler–Ermakov systems. The actual form of the orbit is intricate and will be omitted.
In spite of the orbits being analytically known in the present example, the time evolution of
the dynamic variables cannot be calculated analytically because the quadrature (30) is not
expressed in terms of elementary functions. Similar reasoning apply for other values of the
parametersI andg3.

4. Linearization and reduction to free motion

In this section, we reverse the arguments and search for classes of Ermakov systems whose
linearized form is simply a free motion. Among those, we find examples of linearizable
Ermakov systems that arenot of the Kepler–Ermakov type. In addition we find that a whole
class of Ermakov systems, still depending on two arbitrary functions, are reducible, by the
linearization process, to simple free motion. Let

a ≡ h∂h/∂θ b ≡ h2 + F c ≡ 0 (52)

in the linear equation (17), yielding free particle motion,

d2ψ/dθ2 = 0. (53)

In this case the general solution is

ψ = c1 + c2θ (54)

wherec1 andc2 are arbitrary constants. In this case the quadrature (30) has the form∫ θ dλ

h(λ; I )(c1 + c2λ)2
−
∫ t dλ

ρ2(λ)
= J. (55)

For each given functionh(θ; I ), we locally find, from equation (55), that eithert =
t (θ; I, J, c1, c2) or θ = θ(t; I, J, c1, c2). The corresponding orbits are given by

r = r(θ; I, J, c1, c2) = ρ(t (θ; I, J, c1, c2))

c1 + c2θ
(56)

whereas the time evolution of the radial variable follows from

r = r(t; I, J, c1, c2) = ρ(t)

c1 + c2θ(t; I, J, c1, c2)
. (57)

This completes, in the quadrature sense, the integration of the equations of motion.
The dynamical system in the original variables can be obtained from (52) and from (20)–

(22) read in reversed order:

A = (dV/dθ)/(r2θ̇ ) B = (r2θ̇ )2 + F(θ) C = 0. (58)

This yields the frequency function

ω2 = − ρ̈
ρ

+ θ̇2 +
(ρṙ − ρ̇r)
ρr5θ̇

dV

dθ
+

1

r4
F (59)

and the corresponding Ermakov system

ρr̈ − ρ̈r +
(ρṙ − ρ̇r)
r4θ̇

dV (θ)

dθ
= 0 (60)

rθ̈ + 2ṙ θ̇ = − 1

r3

dV (θ)

dθ
(61)
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in polar coordinates. When these equations are rewritten in the original Cartesian coordinates
we arrive at Ermakov systems in the form (1), (2) with frequency

ω2 = − ρ̈
ρ

+

(
xẏ − yẋ
x2 + y2

)2

+
f (y/x) + g(x/y)

xy(x2 + y2)

+
(ρẋ − ρ̇x)x + (ρẏ − ρ̇y)y
ρ(x2 + y2)(xẏ − yẋ)

(
1

x2
f (y/x)− 1

y2
g(x/y)

)
(62)

which is dependent on the dynamical variablex andy besides time. The resulting system is of
the generalized Ermakov type and despite its dependence on the arbitrary functionsρ, f and
g, its solution can be reduced to the solution for a free-particle problem plus the quadrature
(55).

5. Conclusion

In this paper, an extensive class of generalized Ermakov systems, characterized by several
arbitrary functions was shown to possess equivalent linear form. The linearization process
depends basically on the existence of the Lewis–Ray-Reid invariant, a fact that is always
assured for Ermakov systems, both in its usual or generalized form. As a particular result of
the theory, it was shown that the linearization of Kepler–Ermakov systems is nothing but
a special case of the more general linearization of some classes of generalized Ermakov
systems. While usual Ermakov systems are always linearizable, the same does not apply
to generalized Ermakov systems. In this paper, use was made of the linearization variables
(ψ, θ), a choice that originates the system (23), (24). Different choices of linearizing variables
could eventually lead to other classes of linearizable Ermakov systems. As a final comment we
recall that linearization could be a useful criteria to qualify or classify Ermakov systems. For
instance, using the linearization, Athorne classified usual Ermakov systems with respect to the
rational character of their solutions [18, 19]. The same strategy can be applied to linearizable
generalized Ermakov systems. This could be adopted as an alternative to the symmetry criteria
proposed by Leach [10]. At least the class of linearizable Ermakov systems appears to be more
extensive—four arbitrary functions—than the class of generalized Ermakov system with Lie
point symmetry which is specified in terms of only two arbitrary functions.
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[6] Cerveŕo J M and Lejarreta J D 1991Phys. Lett.A 156201
[7] Haas F and Goedert J 1996J. Phys. A: Math. Gen.294083
[8] Goedert J 1989Phys. Lett.A 136391
[9] Goedert J and Haas F 1998Phys. Lett.A 239348

[10] Leach P G L1991Phys. Lett.A 158102
[11] Kaushal R S, Parashar D, Gupta S and Mishra S C 1997Ann. Phys.259233



2844 F Haas and J Goedert

[12] Rogers C and Schief W K 1996J. Math. Ann. Appl.198194
[13] Schief W K, Rogers C and Bassom A P 1996J. Phys. A: Math. Gen.29903
[14] Reid J L and Ray J R 1980J. Math. Phys.211583
[15] Athorne C, Rogers C, Ramgulam U and Osbaldestin A 1990Phys. Lett.A 143207
[16] Goldstein H 1980Classical Mechanics(Reading, MA: Addison-Wesley)
[17] Athorne C 1992J. Diff. Eqns10082
[18] Athorne C 1990Phys. Lett.A 151407
[19] Athorne C 1991J. Phys. A: Math. Gen.24945
[20] Athorne C 1991J. Phys. A: Math. Gen.24L1385
[21] Saermark K 1982Phys. Lett.A 905
[22] Munier A, Burgan J R, Feix M R and Fijalkow E 1981J. Math. Phys.221219
[23] Winternitz P, Smorodinskii Y A, Uhlir M and Fris I 1967Sov. J. Nucl. Phys.4 444
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